

Robust Asset-Liability Management¹

Tjeerd de Vries Alexis Akira Toda

Department of Economics University of California San Diego

May 14, 2024

 1 Link to paper: <https://arxiv.org/abs/2310.00553>

Hedging interest rate risk

- • Many financial institutions have long-term commitments
	- Insurance companies: promise insurance payments
	- Pension funds: promise (defined-benefit) pensions
	- Banks: fund long-term projects with deposits
- Asset-liability management: cover future liabilities by holding sufficient assets
	- Old problem, but still relevant (e.g., collapse of Silicon Valley Bank)
- If market complete, problem trivial by replicating liabilities with zero-coupon bonds (dedication)
- In practice, maturity of liabilities could exceed longest maturity of government bonds, so market incomplete and can only approximate (immunization)

[Introduction](#page-1-0) [Problem statement](#page-6-0) [Robust immunization](#page-13-0) [Evaluation](#page-27-0) [Conclusion](#page-37-0)

Robust immunization Evaluation Conclusion

Bond price and duration

- Consider cash flows f_1, \ldots, f_N paid out at time t_1, \ldots, t_N
- Assuming constant interest rate r , present value is

$$
P = \sum_{n=1}^{N} e^{-rt_n} f_n
$$

• Interest rate sensitivity of bond price is

$$
D := -\frac{\partial \log P}{\partial r} = -\frac{1}{P} \frac{\partial P}{\partial r} = \frac{1}{P} \sum_{n=1}^{N} t_n e^{-rt_n} f_n
$$

• D is called duration because it is weighted average of time to payment: $D = \sum_{n=1}^{N} w_n t_n$ for $w_n := e^{-rt_n} f_n / P$, with $\sum w_n = 1$

KO K (FE K E K E K AR)

[Introduction](#page-1-0) [Problem statement](#page-6-0) [Robust immunization](#page-13-0) [Evaluation](#page-27-0) [Conclusion](#page-37-0)

Robust immunization Evaluation Conclusion

Classical immunization

• Interest rate need not be constant; if $y(t)$ denote (pure) yield at term t, bond price and duration are

$$
P = \sum_{n=1}^{N} e^{-y(t_n)t_n} f_n,
$$

$$
D = \frac{1}{P} \sum_{n=1}^{N} t_n e^{-y(t_n)t_n} f_n
$$

- Here duration is sensitivity of bond price with respect to parallel shift in yield curve \rightarrow [Example](#page-40-0)
- Classical immunization prescribes to match duration of asset and liability so that equity (asset minus liability) is insensitive to yield curve shifts (Macaulay, [1938;](#page-38-0) Samuelson, [1945;](#page-39-0) Redington, [1952\)](#page-39-1) KOD KAR KED KED EE AAA

Limitations of classical immunization

- By construction, only allows for parallel shifts to yield curve, but in practice yield curve can change in many ways
- Because duration is only a scalar, when there are many bonds, it is not obvious how to choose portfolio (indeterminacy)
- Generalizations have been proposed, for instance matching convexity (high-order duration)

$$
\frac{1}{P}\sum_{n=1}^N t_n^2 e^{-y(t_n)t_n} f_n,
$$

but it has been found to lead to portfolio instability and poor performance

• Many other ad hoc methods but lack of principle

[Introduction](#page-1-0) [Problem statement](#page-6-0) [Robust immunization](#page-13-0) [Evaluation](#page-27-0) [Conclusion](#page-37-0)

Roboto Conclusion Concerns Conclusion

COOOC CONCLUSION

6/38

KOD KAR KED KED EE AAA

This paper

- Propose new robust immunization method that maximizes equity against arbitrary interest rate shock
- Idea: span perturbations to yield curve by basis functions, and optimize against worst case perturbation
- Tools:
	- functional analysis: Gateaux derivative
	- numerical analysis: Chebyshev polynomials
- Excellent performance in static and dynamic hedging experiments

Model

- Continuous time, $t \in [0, T]$
- *J* available bonds for trade; bond *i's* cumulative payout denoted by weakly increasing $\mathit{F}_j: [0,\, \mathcal{T}] \rightarrow \mathbb{R}_+$
	- If zero-coupon bond with face value 1 and maturity t_j , then

$$
F_j(t) = \begin{cases} 0 & \text{if } 0 \leq t < t_j, \\ 1 & \text{if } t_j \leq t \leq T \end{cases}
$$

• If continuously pay out coupon c_j , then $F_j(t) = c_j t$

- $F : [0, T] \rightarrow \mathbb{R}_+$: cumulative cash flow to be immunized
- $v : [0, T] \rightarrow \mathbb{R}$: yield curve
- Present value of liability is Riemann-Stieltjes integral

$$
\int_0^T e^{-ty(t)} dF(t)
$$

KED KAR KED KED EE OQO

Cumulative discount rate

- Convenient to define "cumulative discount rate" $x(t) := ty(t)$
- By definition of forward rate, we have

$$
x(t)=\int_0^t f(u)\, \mathrm{d} u,
$$

where $f(u)$ is instantaneous forward rate at term u

• Present value of asset/liability becomes functional

$$
P(x) := \int_0^T e^{-x(t)} dF(t),
$$

• Fund manager's problem is to choose bond portfolio $z=(z_j)\in\mathbb{R}^{J}$ to approximate $P(x)$ by $\sum_{j=1}^{J}z_jP_j(x)$ in some optimal way

Robust immunization problem

- $\bullet \; \mathcal{Z} \subset \mathbb{R}^J$: set of admissible portfolios
- \mathcal{H} : set of admissible perturbations to cumulative discount rate
- After perturbation $h \in \mathcal{H}$, portfolio value ("asset") is

$$
V(z,x+h):=\sum_{j=1}^J z_jP_j(x+h)
$$

• Hence asset minus liability ("equity") is

$$
E(z, x+h) := V(z, x+h) - P(x+h)
$$

• Fund manager seeks to maximize worst case equity, so solve

$$
\sup_{z\in\mathcal{Z}}\inf_{h\in\mathcal{H}}E(z,x+h)
$$

Assumptions

Assumption (Discrete payouts)

The bonds and liability pay out on finitely many dates, whose union is denoted by $\{t_n\}_{n=1}^N \subset (0, T]$.

Assumption (Portfolio constraint)

The set of admissible portfolios $\mathcal{Z} \subset \mathbb{R}^J$ is nonempty and closed. Furthermore, all $z \in \mathcal{Z}$ satisfy value matching:

$$
P(x) = \sum_{j=1}^{J} z_j P_j(x).
$$

• Merely a normalization (objective function $= 0$ at $h = 0$)

Space of cumulative discount rates

- Let $C^r[0, T]$ be vector space of r-times continuously differentiable functions on $[0, T]$
- Space of forward rates is $C[0, T]$ endowed with supremum norm $\left\Vert f\right\Vert _{\infty}=\sup_{t\in\left[0,\mathcal{T}\right]}\left|f(t)\right|$
- Since cumulative discount rate is integral of forward rate, $x(t) = \int_0^t f(u) \, \mathrm{d}u$, let

$$
\mathcal{X}=\left\{x\in C^1[0,T]:x(0)=0\right\}
$$

 \bullet ${\mathcal X}$ is Banach space with norm $\left\| x \right\|_{{\mathcal X}} = \sup_{t \in [0,T]} \left| x'(t) \right|$

KOD KARD KED KED EN MAG

Assumption

Assumption (Basis)

There exists a countable basis $\{h_i\}_{i=1}^{\infty}$ of X such that for each $I \in \{1, \ldots, N\}$, the $I \times N$ matrices $H = (h_i(t_n))$ and $G = (h_i'(t_n))$ have full row rank.

- This assumption allows us to
	- approximate any $x \in \mathcal{X}$ by finitely many basis functions, and
	- avoid indeterminacy
- Example: if h_i polynomial of degree *i* with $h_i(0) = 0$, then OK by Stone-Weierstraß theorem
- Intuitively, $H(G)$ is matrix of perturbations to cumulative discount rate (forward rate) evaluated at payout dates

Admissible perturbations

• To operationalize, define set of admissible perturbations by

$$
\mathcal{H}_{I}(\Delta)\coloneqq\left\{h\in\text{span}\left\{h_{i}\right\}_{i=1}^{I}:\left(\forall n\right)\left|h'\right(t_{n}\right)\right|\le\Delta\right\}
$$

- Intuition: perturb forward rate by at most $\pm\Delta$ within span of first I basis functions
- Thus final maxmin problem is

$$
\sup_{z\in\mathcal{Z}}\inf_{h\in\mathcal{H}_l(\Delta)}E(z,x+h)
$$

• Note: setting in classical immunization corresponds to $I = 1$ and $h_1(t) = t$ (hence $h'_1(t) = 1$)

[Introduction](#page-1-0) [Problem statement](#page-6-0) **[Robust immunization](#page-13-0)** [Evaluation](#page-27-0) [Conclusion](#page-37-0)
00000 0000000 0000000 **COOOO** COOOOO O

Gateaux and Fréchet derivatives

• For perturbation $h \in \mathcal{X}$, rate of change in liability value is Gateaux derivative

$$
\delta P(x; h) := \lim_{\alpha \to 0} \frac{1}{\alpha} (P(x + \alpha h) - P(x))
$$

$$
= -\int_0^T e^{-x(t)} h(t) dF(t)
$$

• Can define bounded linear operator $P'(x)$ by

$$
P'(x)h = -\int_0^T e^{-x(t)}h(t)\,\mathrm{d}F(t),
$$

called Fréchet derivative

[Introduction](#page-1-0) [Problem statement](#page-6-0) **[Robust immunization](#page-13-0)** [Evaluation](#page-27-0) [Conclusion](#page-37-0)
00000 0000000 000000 0**00000** 000000 00000 0

Sensitivity matrix/vector

 $\bullet\,$ Define sensitivity matrix $A=(a_{ij})\in\mathbb{R}^{I\times J}$ and vector $b=(b_i)\in\mathbb{R}^I$ with respect to basis functions by

$$
a_{ij} := -\frac{\delta P_j(x; h_i)}{P(x)} = \frac{1}{P(x)} \int_0^T e^{-x(t)} h_i(t) dF_j(t),
$$

$$
b_i := -\frac{\delta P(x; h_i)}{P(x)} = \frac{1}{P(x)} \int_0^T e^{-x(t)} h_i(t) dF(t)
$$

• Note: b_i is duration if $h_i(t) = t$

 \bullet Convenient to define $A_+ \in \mathbb{R}^{(I+1) \times J}$ and $b_+ \in \mathbb{R}^{I+1}$ by

$$
A_+ \coloneqq \begin{bmatrix} a_0 \\ A \end{bmatrix} \quad \text{and} \quad b_+ \coloneqq \begin{bmatrix} b_0 \\ b \end{bmatrix},
$$

where $a_{0j},\ b_0=1$ defined analogously using $h_0(t)\equiv 1$ KO K (FE K E K E K AR)

[Introduction](#page-1-0) [Problem statement](#page-6-0) **[Robust immunization](#page-13-0)** [Evaluation](#page-27-0) [Conclusion](#page-37-0)

000000 00000000 0000000 00**00000** 000000 000000 000000 0

Sensitivity of equity

• Recall definition of equity

$$
E(z,x):=\sum_{j=1}^J z_jP_j(x)-P(x)
$$

• If perturbation is $h = \Delta \sum_{i=1}^{I} w_i h_i \in \mathcal{H}_I(\Delta)$, sensitivity of equity becomes

$$
\lim_{\Delta \to 0} \frac{1}{\Delta P(x)} E(z, x + h) = -\langle w, Az - b \rangle
$$

• For $h \in \mathcal{H}_I(\Delta)$, coefficients $w = (w_i)$ need to satisfy certain restrictions

Auxiliary problem

• Straightforward to show $h = \Delta \sum_{i=1}^{I} w_i h_i \in \mathcal{H}_I(\Delta)$ if and only if

$$
\mathcal{W} \coloneqq \left\{ w \in \mathbb{R}^l : G'w \in [-1,1]^N \right\},\
$$

where $G = (h'_i(t_n)) \in \mathbb{R}^{I \times N}$

• This motivates solving auxiliary problem

$$
\sup_{z\in\mathcal{Z}}\inf_{w\in\mathcal{W}}-\langle w,Az-b\rangle\iff\inf_{z\in\mathcal{Z}}\sup_{w\in\mathcal{W}}\langle w,Az-b\rangle
$$

to solve maxmin problem

$$
\sup_{z\in\mathcal{Z}}\inf_{h\in\mathcal{H}_l(\Delta)}E(z,x+h)
$$

KOD KARD KED KED EN MAG

18/38

KOD KARD KED KED EN MAG

Solution to auxiliary problem

Proposition (Minmax)

Suppose Assumptions hold, $I \geq J-1$, and sensitivity matrix A_+ has full column rank. Then

1. There exists $(z^*, w^*) \in \mathcal{Z} \times \mathcal{W}$ that achieves minmax value

$$
V_I(\mathcal{Z}) \coloneqq \inf_{z \in \mathcal{Z}} \sup_{w \in \mathcal{W}} \langle w, Az - b \rangle.
$$

2. $V_1(\mathcal{Z}) \geq 0$, and $z \in \mathcal{Z}$ achieves $V_1(\mathcal{Z}) = 0$ if and only if $A_{+}z = b_{+}$.

Robust immunization

Theorem (Robust immunization)

1. Guaranteed equity satisfies

$$
\lim_{\Delta\downarrow 0}\frac{1}{\Delta}\sup_{z\in\mathcal{Z}}\inf_{h\in\mathcal{H}_1(\Delta)}E(z,x+h)=-P(x)V_1(\mathcal{Z}).
$$

2. Letting $z^* \in \mathcal{Z}$ be solution to auxiliary problem and $\theta_j\coloneqq z_j P_j(\mathsf{x})/P(\mathsf{x})$ be corresponding portfolio share, then

$$
\sup_{h\in\mathcal{H}_I(\Delta)}|E(z^*,x+h)|\leq \Delta P(x)\left(V_I(\mathcal{Z})+\frac{1}{4}\Delta\,T^2\mathrm{e}^{\Delta\,T}(1+\|\theta\|_1)\right).
$$

● Solution z^{*} to auxiliary problem achieves guaranteed equity in limit $\Delta \downarrow 0$

20/38

KOD KARD KED KED EN MAG

Implementation

- Implementation requires choice of basis functions $\{h_i\}_{i=1}^\infty$ $i=1$
- Natural to use (Chebyshev) polynomials because Assumptions satisfied and good approximation property (Trefethen, [2019\)](#page-39-2)
- Let $T_n : [-1, 1] \to \mathbb{R}$ be Chebyshev polynomial defined by $T_n(\cos\theta) = \cos n\theta$
- Map $[-1, 1]$ to $[0, 7]$ by affine transformation, so let $g_i(t) = T_{i-1}(2t/T - 1)$ be basis for forward rate
- Define basis for cumulative discount rate by

$$
h_i(t) = \int_0^t g_i(u) \, \mathrm{d} u
$$

Basis for cumulative discount rate

How good is forward rate approximation?

- Use 1985–2022 daily yield curve data from Gürkaynak et al. [\(2007\)](#page-38-1), who estimate Svensson [\(1994\)](#page-39-3) model
- For each day s and term $t_n = n/12$ ($n = 1, \ldots, 360$), calculate the d-day ahead forward rate change $f_{s+d}(t_n) - f_s(t_n)$
- For each s and $d = 1, \ldots, 100$, run OLS regression

$$
f_{s+d}(t_n)-f_s(t_n)=\sum_{i=1}^l\gamma_{isd}g_i(t_n)+\epsilon_s(t_n),\quad n=1,\ldots,N
$$

• Calculate goodness-of-fit measure

$$
R_d^2 := \frac{\sum_{s=1}^{S} \sum_{n=1}^{N} \left(\sum_{i=1}^{I} \hat{\gamma}_{isd} g_i(t_n) \right)^2}{\sum_{s=1}^{S} \sum_{n=1}^{N} (f_{s+d}(t_n) - f_s(t_n))^2}
$$

KOD KARD KED KED EN MAG

Goodness-of-fit

Goodness-of-fit

Implementing robust immunization

1. Let

- $\mathbf{t} = (t_1, \ldots, t_N)$ be $1 \times N$ vector of asset/liability payout dates
- $\mathbf{v} = (v_1, \ldots, v_N)$ be $1 \times N$ vector of yields
- $f = (f_1, \ldots, f_N)$ be $1 \times N$ vector of liabilities
- $\mathbf{F} = (f_{in})$ be $J \times N$ matrix of bond payouts
- 2. Let $I \geq J 1$, define basis functions $\{h_i\}$ as above, construct matrices of
	- basis functions $\mathbf{H} = (h_i(t_n)) \in \mathbb{R}^{I \times N}$,
	- derivatives $\mathbf{G} = (h'_{i}(t_{n})) = (g_{i}(t_{n})) \in \mathbb{R}^{I \times N}$,
	- \bullet zero-coupon bond prices $\mathbf{p} = \exp(-\mathbf{y} \odot \mathbf{t}) \in \mathbb{R}^{1 \times N}$
- 3. Define sensitivity matrix/vectors by

 $A := (\mathbf{H} \text{ diag}(\mathbf{p})\mathbf{F}')/(\mathbf{p}\mathbf{f}'),$ $b \coloneqq \mathbf{H} \text{ diag}(\mathbf{p}) \mathbf{f}'/(\mathbf{p} \mathbf{f}')$

KED KAR KED KED EE YAA

[Introduction](#page-1-0) [Problem statement](#page-6-0) **[Robust immunization](#page-13-0)** [Evaluation](#page-27-0) [Conclusion](#page-37-0)
00000 000000 000000 000000 000000 00000 0 000000

Implementing robust immunization

4. Let

$$
\mathcal{W} \coloneqq \left\{ w \in \mathbb{R}^I : G'w \in [-1,1]^N \right\}
$$

and solve auxiliary problem

$$
V_I(\mathcal{Z}) \coloneqq \inf_{z \in \mathcal{Z}} \sup_{w \in \mathcal{W}} \langle w, Az - b \rangle
$$

- Inner maximization large linear programming problem, so easy to solve
- Outer minimization small convex minimization problem, so easy to solve

[Introduction](#page-1-0) [Problem statement](#page-6-0) [Robust immunization](#page-13-0) **[Evaluation](#page-27-0)** [Conclusion](#page-37-0)
00000 0000000 000000 000000 000000 0

Static hedging

- Liability: constant monthly cash flow with maturity 50 years
- Asset: portfolio of zero-coupon bonds with maturity 1, 2, 5, 10, 30 years
- For static hedging, use daily yield curve data as before, and assume yield curve instantaneously changes to d-day ahead
- Evaluate performance on day s by relative return error

$$
\frac{1}{P(x_s)}\left|\sum_{j=1}^J z_{sj}P_j(x_{s+d}) - P(x_{s+d})\right|
$$

• Compare robust immunization $(RI(0,1,2))$ $\bullet\bullet\bullet$, high-order duration (HD), and key rate duration (KRD) of Ho [\(1992\)](#page-38-2)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [활]할 | ⊙ Q ⊙

[Introduction](#page-1-0) [Problem statement](#page-6-0) [Robust immunization](#page-13-0) **[Evaluation](#page-27-0)** [Conclusion](#page-37-0)

00000 0000000 0000000 000000 000000 0

2000 0000

Average d-day ahead error

30/38

Time series of 30-day ahead error

Histogram

[Introduction](#page-1-0) [Problem statement](#page-6-0) [Robust immunization](#page-13-0) **[Evaluation](#page-27-0)** [Conclusion](#page-37-0)

00000 0000000 0000000 000000 00000 0000

2000 0000

Tail probability

Value at risk

Dynamic hedging

- Estimate no-arbitrage model of Ang et al. [\(2008\)](#page-38-3) by maximum likelihood
- Generate simulated data to evaluate dynamic hedging
- Let $s = \Delta, 2\Delta, \ldots$ be rebalancing date (Δ = one quarter)
- Net asset value (NAV) of fund at date s is (with $s^- = s \Delta$)

• Can show dynamic hedging reduces to static hedging except reducing maturities by Δ everywhere

[Introduction](#page-1-0) [Problem statement](#page-6-0) [Robust immunization](#page-13-0) **[Evaluation](#page-27-0)** [Conclusion](#page-37-0)

000000 0000000 0000000 000000 00000

20000 0000

Histogram of 10-year return error

Average return error

99th percentile of return error

38/38

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그 로 ₩ 9 Q (N

Conclusion

- When the world is complicated, it is natural to optimize against the worst case
- Robust immunization maximizes equity (asset minus liability) against worst interest rate shock
- Easy to implement, excellent performance

References

- Ang, A., G. Bekaert, and M. Wei (2008). "The Term Structure of Real Rates and Expected Inflation". Journal of Finance 63.2, 797-849. DOI: [10.1111/j.1540-6261.2008.01332.x](https://doi.org/10.1111/j.1540-6261.2008.01332.x). Gürkaynak, R. S., B. Sack, and J. H. Wright (2007). "The U.S. Treasury Yield Curve: 1961 to the Present". Journal of Monetary Economics 54.8, 2291-2304. DOI: [10.1016/j.jmoneco.2007.06.029](https://doi.org/10.1016/j.jmoneco.2007.06.029). Ho, T. S. Y. (1992). "Key Rate Durations: Measures of 量 Interest Rate Risks". Journal of Fixed Income 2.2, 29-44. DOI: [10.3905/jfi.1992.408049](https://doi.org/10.3905/jfi.1992.408049). Macaulay, F. R. (1938). Some Theoretical Problems Suggested F. by the Movements of Interest Rates, Bond Yields and Stock Prices in the United States since 1856. National Bureau of
	- Economic Research.

References

- F. Redington, F. M. (1952). "Review of the Principles of Life-office Valuations". Journal of the Institute of Actuaries 78.3, 286–340. doi: [10.1017/S0020268100052811](https://doi.org/10.1017/S0020268100052811).
- Samuelson, P. A. (1945). "The Effect of Interest Rate Increases on the Banking System". American Economic Review 35.1, 16–27.
- Svensson, L. E. O. (1994). Estimating and Interpreting Forward Interest Rates: Sweden 1992–1994. Tech. rep. 4871. National Bureau of Economic Research. DOI: [10.3386/w4871](https://doi.org/10.3386/w4871).
- Ħ Trefethen, L. N. (2019). Approximation Theory and Approximation Practice. Extended. Philadelphia, PA: Society for Industrial and Applied Mathematics. DOI: [10.1137/1.9781611975949](https://doi.org/10.1137/1.9781611975949).

KED KAR KED KED EE YAA

[References](#page-38-4)
 \bullet 000

Yield curve and parallel shift

Yield curve and parallel shift [Return](#page-3-1)

[References](#page-38-4)

Robust immunization with principal components

- Suppose perturbations to forward rates have factor structure
	- E.g., parallel shift is dominant
- For $\Delta_1 \gg \Delta_2 > 0$, consider set of admissible perturbations

$$
\mathcal{H}_1(\Delta_1, \Delta_2)
$$

 := { $h : (\exists \alpha)(\forall n) | \alpha h'_1(t_n) | \leq \Delta_1, |h'(t_n) - \alpha h'_1(t_n)| \leq \Delta_2$ }

• Idea:

- First, perturb forward rate in direction h'_1 by magnitude at most Δ_1 ,
- Then perturb in arbitrary direction by magnitude at most Δ_2

Robust immunization with principal components

Theorem Suppose the set

$$
\mathcal{Z}_1 \coloneqq \left\{ z \in \mathcal{Z} : \sum_{j=1}^J a_{1j} z_j = b_1 \right\}
$$

is nonempty. Then guaranteed equity satisfies

$$
\lim \frac{1}{\Delta_2} \sup_{z \in \mathcal{Z}} \inf_{h \in \mathcal{H}_1(\Delta_1, \Delta_2)} E(z, x + h) = -P(x) V_1(\mathcal{Z}_1),
$$

where the limit is taken over $\Delta_1, \Delta_2 \rightarrow 0$, $\Delta_1/\Delta_2 \rightarrow \infty$, and $\Delta_1^2/\Delta_2 \rightarrow 0$.

44/38

KED KAR KED KED EE OQO